Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.08.22268865

ABSTRACT

The rapid emergence of new SARS-CoV-2 variants raises a number of public health questions including the capability of diagnostic tests to detect new strains, the efficacy of vaccines, and how to map the geographical distribution of variants to better understand patterns of transmission and possible load on healthcare resources. Next-Generation Sequencing (NGS) is the primary method for detecting and tracing the emergence of new variants, but it is expensive, and it can take weeks before sequence data is available in public repositories. Here, we describe a Polymerase Chain Reaction (PCR)-based genotyping approach that is significantly less expensive, accelerates reporting on SARS-CoV-2 variants, and can be implemented in any testing lab performing PCR. Specific Single Nucleotide Polymorphisms (SNPs) and indels are identified that have high positive percent agreement (PPA) and negative percent agreement (NPA) compared to NGS for the major genotypes that circulated in 2021. Using a 48-marker panel, testing on 1,128 retrospective samples yielded a PPA and NPA in the 96.3 to 100% and 99.2 to 100% range, respectively, for the top 10 most prevalent lineages. The effect on PPA and NPA of reducing the number of panel markers was also explored. In addition, with the emergence of Omicron, we also developed an Omicron genotyping panel that distinguishes the Delta and Omicron variants using four (4) highly specific SNPs. Data from testing demonstrates the capability to use the panel to rapidly track the growing prevalence of the Omicron variant in the United States in December 2021.

SELECTION OF CITATIONS
SEARCH DETAIL